Nonparametric Bayesian Multiple Testing for Longitudinal Performance Stratification
نویسندگان
چکیده
This paper describes a framework for flexible multiple hypothesis testing of autoregressive time series. The modeling approach is Bayesian, thought a blend of frequentist and Bayesian reasoning is used to evaluate procedures. Nonparametric characterizations of both the null and alternative hypotheses will be shown to be the key robustification step necessary to ensure reasonable Type-I error performance. The methodology is applied to part of a large database containing up to 50 years of corporate performance statistics on 24,157 publicly traded American companies, where the primary goal of the analysis is to flag companies whose historical performance is significantly different from that expected due to chance.
منابع مشابه
Bayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data
A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...
متن کاملBayesian Semiparametric Methods for Longitudinal, Multivariate, and Survival Data
MICHAEL LINDSEY PENNELL: BAYESIAN SEMIPARAMETRIC METHODS FOR LONGITUDINAL, MULTIVARIATE, AND SURVIVAL DATA. (Under the direction of Dr. David Dunson.) In many biomedical studies, the observed data may violate the assumptions of standard parametric methods. In these situations, Bayesian methods are appealing since nonparametric priors, such as the Dirichlet process (DP), can incorporate a priori...
متن کاملNonparametric Bayesian Multiple Hypothesis Testing of Autoregressive Time Series
This paper describes a framework for flexible multiple hypothesis testing of autoregressive time series. The modeling approach is Bayesian, thought a blend of frequentist and Bayesian reasoning is used to evaluate procedures. Nonparametric characterizations of both the null and alternative hypotheses will be shown to be the key robustification step necessary to ensure reasonable Type-I error pe...
متن کاملBayesian Analysis of Varying Coefficient Models and Applications
ZHAOWEI HUA: Bayesian Analysis of Varying Coefficient Models and Applications. (Under the direction of Hongtu Zhu and David B. Dunson.) The varying coefficient models have been very important analytic tools to study the dynamic pattern in biomedicine fields. Since nonparametric varying coefficient models make few assumptions on the specification of the model, the ‘curse of dimensionality’ is an...
متن کاملBayesian Nonparametric Approach to Multiple Testing
Motivated by the problems in genomics, astronomy and some other emerging fields, multiple hypothesis testing has come to the forefront of statistical research in the recent years. In the context of multiple testing, new error measures such as the false discovery rate (FDR) occupy important roles comparable to the role of type I error in classical hypothesis testing. Assuming that a random mecha...
متن کامل